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Abstract

We consider the broadcasting problem in multi-radio multi-channel ad hoc networks. The objective

is to minimize the total cost of the network-wide broadcast, where the cost can be of any form that is

summable over all the transmissions (e.g., the transmission and reception energy, the price for accessing

a specific channel). Our technical approach is based on a simplicial complex model that allows us to

capture the broadcast nature of the wireless medium and the heterogeneity across radios and channels.

Specifically, we show that broadcasting in multi-radio multi-channel ad hoc networks can be formulated

as a minimum spanning problem in simplicial complexes. We establish the NP-completeness of the

minimum spanning problem and propose two approximation algorithms with order-optimal performance

guarantee. The first approximation algorithm converts the minimum spanning problem in simplical

complexes to a minimum connected set cover problem. The second algorithm converts it to a node-

weighted Steiner tree problem under the classic graph model. These two algorithms offer tradeoffs

between performance and time-complexity. In a broader context, this work appears to be the first that

studies the minimum spanning problem in simplicial complexes and weighted minimum connected set

cover problem.
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I . INTRODUCTION

Multi-Radio Multi-Channel (MR-MC) wireless networking arises in the context of wireless

mesh networks, dynamic spectrum access via cognitive radio, and next-generation cellular net-

works [1]. By the use of multiple channels, spatially adjacent transmissions can be carried over

non-overlapping channels to avoid mutual interference. Furthermore, each node, equipped with

multiple radios, is capable of working in a full-duplex mode by tuning the transmitting and

receiving radios to two non-overlapping channels.

The increasing demand for high data rate and the persistent reduction in radio costs have

greatly stimulated research on MR-MC networks. Considerable work has been done on capacity

analysis, channel and radio assignment [2–5], and routing protocols [2, 4]. In this paper, we

consider the broadcasting problem in MR-MC ad hoc networks.

A. Broadcasting in Single-Radio Single-Channel Networks

Broadcasting is a basic operation in wireless networks for disseminating a message containing,

for example, situation awareness data and routing control information, to all nodes. For a Single-

Radio Single-Channel (SR-SC) network, a key question for the network-wide broadcast is: which

set of nodes should be selected to transmit such that the total cost (such as energy consumption

or the number of transmissions) is minimized. In contrast to the wireless broadcast problems

for minimizing the energy consumption and the number of transmissions which are shown to be

NP-complete in [6], their counterparts in wired networks have polynomial solutions.

The complexity of the problem arises from the broadcast nature of the wireless medium: a

single transmission from one node can reach all the other nodes within the transmission range of

this node, but it may cause interference to other nearby transmissions. This “node-centric” nature

of the wireless broadcasting problem along with the mutual interference between concurrent

transmissions complicates the design of efficient broadcasting algorithms.

B. Broadcasting in MR-MC Networks

In an MR-MC ad hoc network, such as the DARPA Wireless Network after Next (WNaN) [7],

each node is equipped with multiple radios, each operating on a different channel. The intro-

duction of multiple channels and multiple radios further complicates the design of an efficient

broadcasting scheme. Since the number of radios is usually smaller than the number of channels,
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the broadcast scheme should decide not only which nodes act as relays but also for those relay

nodes, which channel(s) should be assigned to the transmitting radio(s). Given the selection

of the relay nodes, two simple broadcast schemes are: (i) transmitting multiple copies of the

message on all channels; (ii) transmitting a single copy of the message on a common channel

dedicated to broadcasting. Both schemes are inefficient. For the latter one, if the broadcast load

is high, the common channel will be overwhelmed, even while plenty of other channels are free.

One subtle issue is the complication of the wireless broadcast advantage. In an MR-MC

network, if the radios of the neighboring nodes are tuned to different channels, a single trans-

mission on one channel cannot reach all the neighboring nodes simultaneously. In other words,

only the neighboring nodes on the same channel can share the wireless broadcast advantage.

More precisely, the concept of neighborhood must be defined both by radio range and channel.

Another subtle issue is channel heterogeneity. Channels may have different bandwidth, fading

condition, and accessing cost, leading to different implications in the total broadcast cost.

Broadcasting in MR-MC networks is thus a multi-faceted problem, involving channel assign-

ment, relay node selection, and channel selection for the source and relay nodes. In this paper,

we focus on the latter two issues by assuming a given channel-to-radio assignment. To avoid

the hidden channel problem [5], two nodes that are two-hops away from each other are assigned

two distinct sets of channels. Our design objective is to minimize the total broadcast cost, where

the cost can be of any form that is summable over all the transmissions, including, for example,

the transmission and reception energy1, the price for accessing each channel.

C. A Simplicial Complex Model for Broadcasting in MR-MC Networks

Our technical approach is based on a simplicial complex model of the broadcasting problem

in MR-MC networks. A simplicial complex is a collection of nonempty sets with finite size

that is closed under the subset operation. In other words, if a sets belongs to the collection,

all subsets ofs also belongs to the collection. An element of the collection is called asimplex

or face. This subset constraint is often satisfied in the network context. For example, subsets

of a broadcast/multicast group are broadcast/multicast groups, subsets of a clique are cliques.

A simple example of graph and simplicial complex is given in Fig. 1. While the concept of

1The ‘reception energy’ denotes the energy consumed by the radio in reception mode.



3

simplicial complex has been around since the 1920’s, many well-solved fundamental problems

in graph remain largely open under this more general model.

We use a simplicial complex model rather than a graph because the simplicial complex

more naturally captures the broadcast channel, and the distinction and disjointness between

broadcasting on different channels. Further, costs can be attached to faces (simplices) in a way

not easily possible with graphs.

Consider an example MR-MC network. As shown in Fig. 2, after the channels are assigned, the

network is partitioned into cliques of nodes. A clique consists of the nodes which are within each

other’s transmission range and share at least one common channel, and two cliques are spliced

(i.e., connected) via nodes operating on multiple channels shared in common by the two cliques.

Within each clique, depending on the cost function, the transmitter decides which dimension

simplex (i.e., a subclique or the clique itself) in a clique complex to activate. The message

for the network-wide broadcast is thus propagated through a sequence of cliques, possibly of

different dimensions. Note that the unicast case corresponds to a clique of dimension 1 (an edge).

This example could also apply to the case where nodes may have multiple radios, perhaps of

different modality (e.g., RF and optical); in this case, there may also be a cost associated with

switching modes.

The network-wide broadcast problem can be formulated as the minimum spanning problem in

simplicial complexes. A clique in the MR-MC network is modeled as a simplex in the simplicial

complex (see Fig. 2), and since a subset of a clique is still a clique, the constructed simplicial

complex meets the requirement of being closed under the subset operation. The minimum

spanning problem in a simplicial complex is to find a connected subset of simplices that covers all

the vertices with the minimum total weight, i.e., the Minimum Connected Spanning Subcomplex

(MCSSub)2. Then the solution to the network-wide broadcast problem can be obtained by solving

the MCSSub problem.

2Strictly speaking, a subcomplex should also be closed under the subset operation, but without loss of generality, we do

not include this condition in the definition of minimum connected spanning subcomplex, which is also more relevant to the

broadcasting problem at hand.
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D. Minimum Spanning Problem in Simplicial Complexes

The minimum spanning problem in a graph is to find a connected subgraph that covers all the

vertices with minimum total weight. The solution must be a tree for graphs with nonnegative

weights (hence called the Minimum Spanning Tree (MST)). There are several polynomial-time

algorithms for MST, e.g., Kruskal’s Algorithm and Prim’s Algorithm [8]. The MST problem

has many applications in network planning, broadcasting in communication networks, touring

problems, and VLSI design [9].

With the addition of high dimensional simplices, the minimum spanning problem in a simpli-

cial complex is fundamentally different and much more difficult than its counterpart in a graph.

First, unlike the case in a graph, the MCSSub of a simplicial complex may not be a “tree”3. As

illustrated in Fig. 3, the MCSSub of the simplicial complex is the three filled triangles which

form a cycle. Second, while simple greedy-type polynomial-time algorithms exist for finding the

minimum spanning tree in a graph, the minimum spanning problem in a simplicial complex is

NP-complete as established in this paper (see Sec. III-A).

We develop polynomial-time approximation algorithms for the minimum spanning problem

in simplicial complexes. We propose two algorithms: one reduces this problem to a minimum

connected set cover problem, and the other reduces the problem to a node-weighted Steiner

tree problem in a graph derived from the original simplicial complex. We also establish the

approximation ratios of the two algorithms. Both are shown to be order-optimal. The time-

complexity of these two algorithms is also analyzed, illustrating the tradeoff between performance

and complexity offered by these two algorithms. In a broader context, this work appears to be the

first that studies the minimum spanning problem in simplicial complexes and weighted minimum

connected set cover problem.

E. Related Work

Broadcasting in MR-MC networks, mostly in the context of wireless mesh networks, has been

studied for different optimization objectives (see [5, 10–12] and references therein). Different

3Although there is no unified definition of tree in simplicial complexes, a couple of definitions can be obtained by generalizing

those equivalent definitions of tree in a graph. For example, simplicial trees can be defined based on the universal existence of

leaves in any subgraph, or the uniqueness of simplicial facet paths (see Sec. II).
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from the previous work, the optimization objective in our work can be any cost function which

is summable over all the transmissions, thus taking into account channel heterogeneity (e.g.,

transmissions on different channels may consume different amounts of energy, due to different

bandwidths or different propagation characteristics or some other factor). We point out that

neither minimizing the total number of transmissions nor minimizing the total number of radios

used in the broadcast is, in general, equivalent to minimizing the total energy consumption.

The reception energy is ignored if the total number of transmissions is minimized, while the

transmission energy and the reception energy are equated if the total number of radios is

minimized. More importantly, channel heterogeneity is not addressed if these two objectives

are optimized.

Furthermore, to our best knowledge, our work is the first to adopt simplicial complexes

to model and solve the broadcast problem in wireless ad hoc networks. For a more detailed

discussion on the potential applications of simplicial complexes in communication and social

networks, readers are referred to [13].

II. BASIC CONCEPTS INSIMPLICIAL COMPLEXES

In this section, we introduce several basic concepts in simplicial complexes [14].

An (abstract) simplicial complexis a collection∆ of nonempty sets with finite size such that

if A ∈ ∆, then∀ B ⊆ A, B ∈ ∆, i.e., ∆ is closed under the operation of taking subsets. The

elementA of ∆ is called asimplexof ∆; its dimension(denoted by dimA) is one less than the

number of its elements. Each nonempty subset ofA is called afaceof A. The dimensionof ∆

is the maximum dimension over all its simplices, or is infinite if the maximum does not exist.

The vertex setV of ∆ is the union of the one-point elements of∆. Fig. 4 shows an example

of a 2-dimensional simplicial complex. A subcollection of∆ that is itself a simplicial complex

is called asubcomplexof ∆. A subcomplex of∆ is thep-skeletonof ∆, denoted by∆(p), if it

is the collection of all simplices of∆ with dimension no larger thanp. Thus, the 1-skeleton is

the underlying graph of∆.

A facetof a simplicial complex∆ is a maximal face of∆, i.e., it is not a subset of any other

face. A simplicial complex isconnectedif its 1-skeleton (i.e., the underlying graph) is connected

in the graph sense.
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A weighted simplicial complex(WSC)∆ is a triple(V,S, w)4, whereV is the set of vertices,

S the set of faces of∆, andw : S → {R+ ∪ {0}} a nonnegative weight function defined for

each face inS with w(v) = 0 for all v ∈ V . We define thefacet-only weightWF (∆) of a WSC

∆ as

WF (∆) =
∑

Fi∈{facet of∆}

w(Fi).

III. M INIMUM CONNECTED SPANNING SUBCOMPLEX

In this section, we show that the MCSSub problem is NP-complete, and we propose two

approximation algorithms based on connected set cover and node-weighted Steiner tree. We also

establish the approximation ratios of the two algorithms and analyze their time complexity.

A. NP-Completeness

The decision version (D-MCSSub) of the MCSSub problem is stated as follows: letV (∆)

denote the vertex set of a WSC∆ and WF (∆) the facet-only weight of∆. Given a WSC

∆ = (V,S, w) andK > 0, is there a connected subcomplex∆sub of ∆ such thatV (∆sub) = V

andWF (∆
sub) ≤ K? Then we have the following theorem.

Theorem 1:The D-MCSSub problem is NP-complete.

To prove the NP-completeness, we reduce a classic NP-complete problem – the unweighted

set cover problem to the MCSSub problem.

Proof: To check a solution to the D-MCSSub problem, we only need to verify the following

points: (i) compute the facet-only weight of the solution and compare the weight withK; (ii)

check whether the underlying graph of the solution is connected or not; (iii) check whether all

the vertices of the original simplicial complex are covered by the solution. Since all these can

be done within polynomial time, the D-MCSSub problem is NP.

Given is an unweighted Set Cover instanceI, i.e., a universe of elementsU and a family

of subsetsF of U . For each elementu ∈ U , we introduce a corresponding vertex in MCSSub

instanceI ′. We introduce one additional vertexd. For each setf ∈ F , we introduce a corre-

sponding facef ′ = f ∪ {d}, of weight 1. Being a simplcial complex, all subsets off ′ are also

4(S , w) suffices to denote the WSC sinceV ⊆ S , but we use the redundant(V,S , w) for convenience.
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introduced, all also of weight 1. In addition to covering all vertices, a solution toI ′ must be

connected.

Given any solutionSOL to I of cost c, we can construct a solution toI ′ also of costc. For

every setf in SOL not includingd, replacef with f ∪ {d}.

On the other hand, given any solutionSOL′ to I ′ of costc, a solution toI of the same cost

can be constructed as follows: for any facef ∈ SOL′ such thatf does not appear as a set in

F , replacef with any superset off − {d} appearing inF . Note that there must exist at least

one such superset.

This proof is for general D-MCSSub problems. It can be shown that even if the weight function

of the WSC is monotone or strictly monotone5, the D-MCSSub problem is NP-hard. But it is

still possible that the D-MCSSub problem under some special structured weight function is P.

In the following, we present two approximation algorithms for the MCSSub problem both

with performance guaranteeO(lnn), wheren is the number of vertices in the WSC. Since the

best possible approximation ratio for the set cover problem islnn [15], these two algorithms

are order-optimal.

B. Algorithm Based on Connected Set Cover

Let A be a set with finite number of elements, andB = {Bi ⊆ A : i = 1, ..., n} a collection

of subsets ofA where eachBi is associated with a weightw(Bi) ≥ 0. Let G be a connected

graph with the vertex setB. A connected set cover(CSC)SC with respect to(A,B, w,G) is a

set cover ofA such thatSC induces a connected subgraph ofG. The minimum connected set

cover (MCSC) problem is to find the CSC with the minimum weight, where the weight of a

CSCSC is defined as

w(SC) =
∑

Bi∈SC

w(Bi).

From a WSC∆ = (V,S, w), we derive an auxiliary undirected graphG∆ in the following

way: letS \V be the vertex set ofG∆, and connect two vertices (non-vertex faces in∆) S1 and

S2 if and only if S1 ∩S2 6= ∅ (i.e.,S1 andS2 have at least one element ofV in common). Then

5We say that the weight function satisfies themonotoneproperty if for any two facesS1 ⊆ S2, w(S1) ≤ w(S2), i.e., the

weight is monotone non-decreasing with respect to the dimension of the face.
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we have the following theorem on the relation between the MCSSub problem and the MCSC

problem.

Theorem 2:Let ∆∗ be the MCSSub of a WSC∆ = (V,S, w) andS∗
C the MCSC of(V,S \

V, w,G∆). Then we have

wF (∆
∗) = w(S∗

C).

Proof: The proof is based on the following lemma.

Lemma 1:Let S∗
C be the MCSC of(V,S \ V, w,G∆). For any faceS ∈ S∗

C with w(S) > 0,

we have that there does not exist a faceS ′ ∈ S∗
C such thatS ⊂ S ′.

Proof of Lemma 1:Suppose that for some faceS ∈ S∗
C with w(S) > 0, ∃ S ′ ∈ S∗

C such that

S ⊂ S ′. Let S ′
C = S∗

C \ s. Obviously,S ′
C is a set cover, andw(S ′

C) = w(S∗
C)−w(S) < w(S∗

C).

On the other hand, sinceS ∩ S ′′ 6= ∅ impliesS ′ ∩S ′′ 6= ∅ for any faceS ′′ ∈ S∗
C , it follows from

the connection rule of the auxiliary graphG∆ that any path viaS has an alternative path viaS ′.

Thus,S ′
C is a CSC, leading to a contradiction.

Given the MCSCS∗
C of (V,S \ V, w,G∆), we can obtain a connected spanning subcomplex

∆∗
C by mapping each element ofS∗

C to a face in∆. Since the facet-only weightwF (∆
∗
C) of ∆∗

C

only counts facets in∆∗
C , it follows thatwF (∆

∗
C) ≤ w(S∗

C). Based on Lemma 1, we have that

every element ofS∗
C with positive weight is a facet in∆∗

C , and thus

wF (∆
∗) ≤ wF (∆

∗
C) = w(S∗

C),

where∆∗ is the MCSSub of∆.

On the other hand, the facets of∆∗ leads to an CSCS∗
∆, andw(S∗

∆) = wF (∆
∗). It implies

that

w(S∗
C) ≤ w(S∗

∆) = wF (∆
∗).

Thus,wF (∆
∗) = w(S∗

C).

1) Algorithm: Based on Theorem 2, we can reduce the MCSSub problem of a WSC∆ =

(V,S, w) to the MCSC problem(V,S \ V, w,G∆). We obtain the following Set Cover based

Algorithm (SCA) for the MCSSub problem.

Algorithm 1: SCA for MCSSub:

INPUT: A WSC∆ = (V,S, w).
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OUTPUT: An approximate MCSSub∆C of ∆.

1. Derive the auxiliary graphG∆.

2. Find an approximate MCSCSC of (V,S \ V, w,G∆) by using the greedy algorithm for

MCSC (Algorithm 2).

3. TransformSC to a connected spanning subcomplex∆C by mapping each element ofSC to

a face in∆.

Zhang et al. propose a greedy approximation algorithm for the unweighted MCSC prob-

lem [16], i.e.,w(Bi) = 1 for all i. The original algorithm in [16] has a flaw and the established

approximation ratio is incorrect. In [17], the flaw is corrected and a stronger result on the

approximation ratio is shown. By generalizing their greedy approach, we develop a greedy

algorithm for the weighted MCSC problem.

Before stating the algorithm, we introduce the following notations and definitions. For two

setsS1, S2 ∈ S, let distG(S1, S2) be the length of the shortest path betweenS1 andS2 in an

auxiliary graphG, where the length of a path is given by the number of edges;S1 andS2 are

said to begraph-adjacentif they are connected via an edge inG (i .e., distG(S1, S2) = 1), and

they are said to becover-adjacentif S1∩S2 6= ∅. Notice that in a general MCSC problem, there

is no connection between these two types of adjacency. Thecover-diameterDC(G) is defined

as the maximum distance between any two cover-adjacent sets,i.e.,

DC(G) = max{distG(S1, S2) | S1, S2 ∈ S andS1 ∩ S2 6= ∅}.

For the MCSC problem derived from the MCSSub problem of a WSC∆, we have thatDC(G∆) =

1.

At each step of the algorithm, letR denote the collection of the subsets (faces of∆) that

have been selected, andU the vertex subset of∆ that has been covered. GivenR 6= ∅ and a set

S ∈ S \ R, anR → S path is a path{S0, S1, ..., Sk} in G such that (i)S0 ∈ R; (ii) Sk = S;

(iii) S1, ..., Sk ∈ S \ R. We define the weight ratior(PS) of PS as

r(PS) =
w(S(PS) \ R)

|VN(PS)|
=

∑

S∈S(PS)\R
w(S)

|VN(PS)|
, (1)

whereS(PS)\R is the subsets (faces inS) of PS that are not inR, and|VN(PS)| is the number

of vertices of∆ that are covered byPS but not covered byR.
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Algorithm 2: A Greedy Algorithm for MCSC.

INPUT: (V,S \ V, w,G∆)

OUTPUT: A CSCR.

1. ChooseS0 ∈ S \ V such that the weight ratior(S0) defined in (1)is the minimum, and

let R = {S0} andU = S0.

2. WHILE V \ U 6= ∅ DO

2.1. For eachS ∈ S \ (V ∪R) which is cover-adjacent or graph-adjacent with a set inR,

find a shortest6 R → S pathPS.

2.2. SelectPS with the minimum weight ratior(PS) defined in (1), and letR = R ∪ PS

(add all the subsets ofPS to R) andU = U ∪ VN(PS).

END WHILE

3. RETURN R.

2) Approximation Ratio:The approximation ratio of SCA is determined by Step 2,i.e., the

approximation ratio of the greedy algorithm for the MCSC problem. First, we establish the

following lemma.

Lemma 2:Given a weighted MCSC problem(V,S \ V, w,G) with DC(G) = 1, let

Rw =
max
S∈S

{w(S)}

min
S∈S

{w(S)}
. (2)

Then the approximation ratio of the greedy algorithm for MCSC is at mostRw + H(γ − 1),

whereγ = max{|S| | S ∈ S \ V } is the maximum size of the subsets inS andH(·) is the

harmonic function.

Proof of Lemma 2: The proof is based on the classic charge argument. LetS∗ be an

optimal solution to the weighted set cover problem(V,S \ V, w), andR the solution returned

by the greedy algorithm for the weighted MCSC problem(V,S \V, w,G) with DC(G) = 1. Let

w(S∗) andw(R) denote the total weight of the subsets included inS∗ andR, respectively. In

the following, we will show that

w(R)

w(S∗)
≤ Rw +H(γ − 1). (3)

6Notice that the shortest path is defined in terms of the number of edges, not the total weight of all vertices along the path.
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LetS∗
C be an optimal solution to the weighted MCSC problem(V,S \V, w,G) with DC(G) =

1. Sincew(S∗) ≤ w(S∗
C), Lemma 2 follows immediately.

To prove (3), we apply the classic charge argument. Each time a subsetS0 (at step 1) or

a shortestR → S path P ∗
S (at step 2) is selected to be added toR, we charge each of the

newly covered elementsw(S0)
|S0|

(at step 1) orr(P ∗
S) defined in (1) (at step 2). Notice that when

DC(G) = 1, the shortestR → S pathP ∗
S is only a single edge connecting some subset inR

andS, and

r(P ∗
S) =

w(S(P ∗
S \ R))

|VN(P ∗
S)|

=
w(S)

|S \ U |
.

During the entire procedure, each element ofV is charged exactly once. Assume that step 2

is completed inK − 1 iterations. LetP ∗
Si be the shortestR → S path selected by the algorithm

at iterationi. Let C(v) denote the charge of an elementv in V . Then we have that

∑

v∈V

C(v) =
K−1
∑

i=0

∑

v∈VN (P ∗

Si
)

C(v)

=

K−1
∑

i=0

∑

v∈Si\U

w(Si)

|Si \ U |

=

K−1
∑

i=0

w(Si) = w(R), (4)

whereP ∗
S0 = {S0}.

Suppose thatS∗ = {S∗
1 , ..., S

∗
N} is a minimum weighted set cover for{V,S \ V, w}. Since an

element ofV may be contained in more than one subset ofS∗, it follows that

∑

v∈V

C(v) ≤
N
∑

i=1

∑

v∈S∗

i

C(v). (5)

Next we will show an inequality which bounds from above the total charge of a subset inS∗,

i.e., for anyB∗ ∈ S∗,
∑

v∈B∗

C(v) ≤ [Rw +H(|S∗| − 1)]w(S∗). (6)

Let ni (i = 0, 1, ..., K) be the number of elements ofS∗ that have not been covered byS after

iterationi− 1, where step 1 is considered as iteration0. Let {i1, ..., ik} denote the subsequence

of {i = 0, 1, ..., K − 1} such thatni − ni+1 > 0. For each elementa covered at iterationi1, if
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i1 = 0, based on the greedy rule at step 1, we have that

C(v) = r(P ∗
S0
) ≤

w(S∗)

ni1

; (7)

Otherwise,

C(v) = r(P ∗
Si1

) =
w(Si1)

|Si1 \ U |
≤

w(S∗)Rw

ni1 − n(i1+1)

. (8)

The inequality in (8) is due to the fact thatSi1 covers at leastni1 − n(i1+1) elements ofV , i.e.,

|Si1 \ U | ≥ ni1 − n(i1+1). Summing up (7) and (8),

C(v) ≤
w(S∗)Rw

ni1 − n(i1+1)

. (9)

Consider two cases:

(i) If all the elements ofS∗ have been covered after iterationi1, i.e., n(i1+1) = 0, then

∑

v∈S∗

C(v) ≤
∑

v∈S∗

w(S∗)Rw

n0
= w(S∗)Rw. (10)

(ii) If not all the elements ofS∗ have been covered byR after iterationi1, S∗ becomes cover-

adjacent withR and thus a candidate for being selected at the following iterations. At each

iteration, for each elementv ∈ S∗ covered at iterationij (j = 2, ..., k), the greedy rule at

step 2 still yields

C(v) = r(P ∗
Sij

) ≤ r(P ∗
S∗)

=
w(S∗)

|S∗ \ U |
=

w(S∗)

nij

. (11)

It follows from (9,11) that

∑

v∈S∗

C(v) ≤ w(S∗)(ni1 − n(i1+1))
1

ni1 − n(i1+1)

+w(S∗)

k
∑

j=2

(nij − n(ij+1))
1

nij

= w(S∗)

(

1 +

k
∑

j=2

nij − ni(j+1)

nij

)

. (12)

Here we have used the fact thatn(ij+1) = ni(j+1)
. It is because between iterationij and

iteration i(j+1), no elements ofS∗ are covered.
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For the summation term in (12), we have the following inequality:

k
∑

j=2

nij − ni(j+1)

nij

≤
k
∑

j=2

1

nij

+ · · ·+
1

ni(j+1)
+ 1

= H(ni2) ≤ H(|S∗| − 1). (13)

The last inequality is due to the fact thatni2 ≤ ni1 − 1 = |S∗| − 1.

Eqn. (6) is a direct consequence of (10), (12), and (13). Thus, using (4-6),

w(R) =
∑

v∈V

C(v) ≤
N
∑

i=1

∑

v∈S∗

i

C(v)

≤
N
∑

i=1

[Rw +H(|S∗
i | − 1)]w(S∗

i )

≤ [Rw +H(γ − 1)]w(S∗).

Then, as a direct consequence of Lemma 2, we have the followingtheorem on the approxi-

mation ratio7 of the greedy algorithm for the MCSC problem withDC(G) = 1.

Theorem 3:Let ∆∗ be the MCSSub of a WSC∆ = (V,S, w) and∆C be the solution returned

by Algorithm 1. LetRw be defined as in (2). Then we have

wF (∆C)

wF (∆∗)
≤ Rw +H(dim∆),

where dim∆ is the dimension of∆ andH(·) is the harmonic function.

From Theorem 3, we see that the approximation ratio depends on the ratioRw of the maximum

weight to the minimum weight. It is shown in the following theorem that ifRw is unbounded,

then the scaling order of the approximation ratio can be as bad as linear with respect to the

number of vertices in the simplicial complex.

Theorem 4:Let n be the number of the vertices in a WSC∆ = (V,S, w), andRw defined

as in (2). If Rw is unbounded, then the approximation ratio of Algorithm 1 for the MCSSub

problem of∆ is Ω(n).

7The approximation ratio of the greedy algorithm for general weighted MCSC problem is still an open problem.
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Proof: Consider a specific example:∆ is a (n−1)-dimensional simplex with the vertex set

V = {v1, ..., vn}, and all the weights of the faces are infinite except for the following five faces:

w(S1) = w
({

v1, ..., vn
2

})

=
1

2
,

w(S2) = w
({

v1, ..., vn
4
, v(n

2
+2)

})

=
1

2
,

w(S3) = w
({

v(n
4
+1), ..., v(n

2
+1)

})

=
1

2
,

w(S4) = w
({

vn
2
, ..., vn

})

=
n

8
,

w(S5) = w
({

v(n
2
+1), ..., vn

})

= 1.

For ease of presentation, we have assumed thatn is a multiple of4. By applying Algorithm 1,

we reduce the MCSSub problem for∆ to the MCSC problem(V,S \ V, w,G∆). Due to the

weight assignment, it suffices to only consider the subgraph ofG∆ induced by the above five

faces, as shown in Fig 5.

The optimal solution∆∗ to the MCSSub problem is given by

∆∗ = {S ∈ S | S ⊆ S2 or S3 or S5},

and

wF (∆
∗) = w(S2) + w(S3) + w(S5) = 2.

On the other hand, the solution∆C returned by Algorithm 1 is given by

∆C = {S ∈ S | S ⊆ S1 or S4},

and

wF (∆C) = w(S1) + w(S4) =
1

2
+

n

8
.

Specifically,S1 is firstly selected, and thenS4. Thus,

wF (∆C)

wF (∆∗)
=

n

16
+

1

4
= Θ(n).

It follows that the approximation ratio of Algorithm 1 isΩ(n).

From Theorem 4, we see that Algorithm 1 is not suitable for the MCSSub problem of a WSC

∆ if its weight function has a relatively wide range. As shown next in Sec. III-C, the other

approximation algorithm based on the Steiner tree does not have this issue: its approximation

ratio does not depend on the range of the weight function.
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C. Algorithm Based on Steiner Tree

From a WSC∆ = (V,S, w), we derive an undirected graphH∆ with the vertex setS: for

each faceS ∈ S \ V (i.e., the faces that are not the vertices of∆), we replace it by a vertex

vS in H∆ and connectvS to all the vertices ofS. The weightw(vS) assigned to the vertexvS

is the weightw(S) of the faceS. Notice that the weight of vertices inH∆ corresponding to

the vertices in∆ (i.e., V) is zero. Fig. 6 shows an example of the derivation of the graph from

a 2-simplex. We have the following theorem on the relation between the MCSSub of∆, the

Steiner tree ofH∆ that spans the vertex setV of ∆ and the minimum connected dominating

set8 of H∆.

Theorem 5:Let ∆∗ denote the MCSSub of a WSC∆ = (V,S, w), T ∗ the Steiner tree ofH∆

that spans the vertex setV of ∆, andD∗
C the minimum connected dominating set ofH∆. Then

we have that

wF (∆
∗) = w(T ∗) = w(D∗

C).

Proof: First we show thatwF (∆
∗) = w(T ∗). Since every connected spanning subcomplex

∆′ of ∆ corresponds to a connected subgraph ofH∆ which only contains the vertices of∆ and

the vertices representing the facets of∆′, it follows thatw(T ∗) ≤ wF (∆
∗). On the other hand,

since by contradiction, there is a one-to-one mapping between the vertices of the Steiner tree of

H∆ and the vertices plus the facets of a connected spanning subcomplex of∆, it follows that

wF (∆
∗) ≤ w(T ∗).

Next we show thatw(T ∗) = w(D∗
C). Notice that the vertex setV of ∆ is a dominating set

of H∆. Since the Steiner treeT ∗ of H∆ spans the vertex setV , T ∗ is a CDS ofH∆. Thus,

w(D∗
C) ≤ w(T ∗). On the other hand, given the minimum CDSD∗

C of H∆, since each vertexv

in the vertex setV is either inD∗
C or a neighbor of some face inD∗

C and the weights of the

vertices inV are all zero, the combination ofV andD∗
C yields a connected subgraph ofH∆

that spansV with the same weight asD∗
C . Thus,w(T ∗) ≤ w(D∗

C).

8A dominating set of a graph is a subset of vertices such that every vertex of the graph is either in the subset or a neighbor

of some vertex in the subset, and a connected dominating set (CDS) is a dominating set where the subgraph induced by the

vertices in the dominating set is connected. The CDS problem asks for a CDS with the minimum total weight, and it is shown

to be a special case of the MCSC problem [17].
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Based on Theorem 5, we propose the following Steiner Tree based Algorithm (STA) for the

MCSSub problem.

Algorithm 3: STA for MCSSub:

INPUT: A WSC∆ = (V,S, w).

OUTPUT: An approximate MCSSub∆C of ∆.

1. Derive the graphH∆ from ∆.

2. Obtain an approximate Steiner treeT of H∆ by using the algorithms given in [18, 19].

3. TransformT to a connected spanning subcomplex∆C of ∆ by mapping each vertex ofT

to a face of∆.

Since approximation only occurs in Step 2, the approximationratio of STA is equal to that

of the algorithm for the node-weighted Steiner tree problem. The best approximation ratio is

known to be(1.35+ ǫ) lnn for any constantǫ > 0, wheren is the number of vertices of∆ and

is also the number of terminals in the Steiner tree ofH∆ [19]. Here we do not try to find the

CDSD∗
C of H∆ at step 2, because the best known approximation ratio for the CDS problem is

(1.35+ ǫ) lnn(H∆) [19, 20]. Sincen(H∆) ≫ n, the latter approximation ratio is much worse than

the former one.

D. Time Complexity Analysis

Here we analyze the time complexity of SCA and STA for the MCSSub problem. Given a

WSC∆ = (V,S, w), let n = |V | denote the number of vertices in∆, m = |S \ V | the number

of non-vertex faces in∆, andd the dimension of∆. Recall that the existence of edges in the

auxiliary graphG∆ for SCA and the derived graphH∆ for STA depends entirely on whether

the two non-vertex faces overlap and whether the vertex is contained in the non-vertex face,

respectively. It implies that all the information of these two graphs can be easily retrieved from

the WSC∆. Thus, Step 1 in both algorithms can be skipped in the implementation, and the

time complexity of both algorithms is determined by their Step 2.

Step 2 of SCA is to apply the greedy algorithm to the MCSC problem(V,S \ V, w,G∆). It

takesO(m) time to complete Step 1 of the greedy algorithm. Since at least one vertex becomes

covered at each iteration of Step 2 of the greedy algorithm, there are at mostn − 1 iterations.
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At each iteration, the weight ratios of at mostm faces are computed, and due to the fact that

cover-adjacent faces are graph-adjacent, the weight ratio of each face is done in constant time.

Thus, the running time of SCA isO(m+ nm) = O(nm).

Since the derived graphH∆ hasn+m vertices andO(dm) edges and the Steiner tree hasn

terminals to cover, it follows from [21] that the running time of Step 2 of STA isO(dnm2 +

nm2 logm). From the above, we see that the time complexity of STA is significantly higher than

that of SCA. This is mostly because the approximation algorithm for the Steiner tree requires

the computation of the shortest paths between all vertex pairs.

We point out that while the Steiner tree based algorithm has a higher complexity, it can offer

better performance in a WSC with a large weight range. In a simulation example of random

simple complexes, we consider a case where each face weight takes only two valueswmin and

wmax with equal probability. Withwmin = 1, wmax = 10000, and 1000 Monte Carlo runs for

a 200-vertex random simplicial complex9 [23], we find that the total weight of the solution

returned by the set cover based algorithm can be1.7 times that of the solution returned by the

Steiner tree based algorithm. These two algorithms thus offer a tradeoff between performance

and complexity.

IV. SIMULATION RESULTS

In this section, we present simulation results on the performance of the two approximation

algorithms (SCA and STA) for the broadcast problem in an MR-MC network. We consider a

dense MR-MC network, where all the nodes are within each other’s transmission range, and we

aim to minimize the total energy consumption of the broadcast.

There are12 non-overlapping channelsfi (1 ≤ i ≤ 12), possibly with different communication

ratesri, available for the MR-MC network, and each node is equipped with4 radios. At the

beginning of the broadcast, each node randomly selects4 of the 12 channels for its4 radios.

9A random simplicial complex∆(n,D, ~p) with n vertices, dimension at mostD, and aD-dimensional probability vector

~p = {p1, p2, ..., pD} is constructed in a bottom-up manner: firstn vertices are fixed, which are the0-simplices of∆, and then

higher-dimensional simplices are generated inductively. Specifically, for each1 ≤ i ≤ D, after all the simplices with dimension

lower thani have been generated, consider everyi-tuple of vertices: if they have formed all the lower dimensional simplices,

then ani-simplex consisting of them is generated with probabilitypi. Notice that a random simplicial complex∆(n, 1, p) is

the random graph introduced by Erdős and Rényi [22].
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As discussed in Sec. I-C, the nodes which share at least one common channel form a clique,

and there is a one-to-one correspondence between the cliques and the faces of the derived

WSC. The weight of the face is defined as the energy consumption of the broadcast within the

corresponding clique,i.e., the sum of the transmission energy and the reception energy. LetS be

a face containingk + 1 nodes and{fSj : j = 1, 2, ..., q} the q (1 ≤ q ≤ 12) common channels

shared by thek+1 nodes. Assume that if a node in the clique is selected as relay, it will choose

the common channel with the maximum communication rate to transmit. Then the weightw(S)

of the faceS is given by

w(S) = (Ptx + kPrx)
L

max
j=1,...,q

{rSj}
,

wherePtx andPrx are the transmission power and the reception power, respectively, andL is a

constant.

In Fig. 7, the average total energy of the solutions returned by SCA and STA is compared with

that of the MST with respect to the underlying graph of the WSC. The average is taken over

10 random channel assignments. Notice that although two different links on the same channel

are treated separately when the MST is derived, the transmission energy corresponding to them

is counted only once to exploit the wireless broadcast advantage when the total energy of the

MST is computed. We see that the performances of SCA and STA are extremely close, and their

performances are significantly better than that of MST.

V. CONCLUSION AND FUTURE WORK

In this paper, we study the minimum cost broadcast problem in multi-radio multi-channel ad

hoc networks, where the total cost is the sum of the costs associated with the transmissions during

the broadcast. We formulate it as the minimum spanning problem in simplicial complexes. We

show that it is NP-complete. Hence we propose two approximation algorithms for this minimum

spanning problem: one is to transform it into the connected set cover problem; the other is

to transform it into the node-weighted Steiner tree problem and then apply the corresponding

algorithm. Despite their distinct approaches, both approximation algorithms are shown to be

order-optimal and offer a tradeoff in terms of performance vs. complexity.

As a starting point, we have assumed that the channel assignment scheme is designed indepen-

dent of the broadcast scheme. The joint optimization of the two schemes will further reduce the
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broadcast cost. Another future direction is to develop distributed versions of the approximation

algorithms for the minimum cost broadcast problem.
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[6] M. Čagalj, J. Hubaux, and C. Enz, “Minimum-energy broadcast in all-wireless networks: Np-completeness

and distribution issues,” inProc. of ACM MobiCom, September 2002, pp. 172–182.

[7] J. Redi and R. Ramanathan, “The darpa wnan network architecture,” inProc. of IEEE MILCOM, Baltimore,

April 2011.

[8] J. Kleinberg and E. Tardos,Algorithm Design. Boston, MA: Addison Wesley, 2005.

[9] C. F. Bazlamacci and K. S. Hindi, “Minimum-weight spanning tree algorithms: A survey and empirical study,”

Computers & Operations Research, vol. 28, no. 8, pp. 767–785, July 2001.

[10] C. T. Chou, A. Misra, and J. Qadir, “Low-latency broadcast in multirate wireless mesh networks,”IEEE

Journal on Selected Areas in Communications (JSAC), vol. 24, no. 11, pp. 2081–2091, November 2006.

[11] L. Li, B. Qin, C. Zhang, and H. Li, “Efficient broadcasting in multi-radio multi-channel and multi-hop wireless

networks based on self-pruning,” inProc. of HPCC, September 2007, pp. 484–495.

[12] H. S. Chiu, B. Wu, K. L. Yeung, and K. S. Lui, “Widest spanning tree for multi-channel multi-interface

wireless mesh networks,” inProc. of IEEE WCNC, March 2008, pp. 2194–2199.

[13] R. Ramanathan, A. Bar-Noy, P. Basu, M. Johnson, W. Ren, A. Swami, and Q. Zhao, “Beyond graphs: Capturing

groups in networks,” inProc. of IEEE NetSciCom, April 2011.

[14] J. R. Munkres,Elements of Algebraic Topology. Menlo Park, CA: Addison-Wesley, 1984.

[15] U. Feige, “A threshold oflnn for approximating set cover,”Journal of the ACM, vol. 45, no. 4, pp. 634–652,

July 1998.

[16] Z. Zhang, X. F. Gao, and W. L. Wu, “Algorithms for connected set cover problem and fault-tolerant connected

set cover problem,”Theoretical Computer Science, vol. 410, no. 8-10, pp. 812–817, March 2009.



20

[17] W. Ren and Q. Zhao, “A note on: ‘algorithms for connected set cover problem and fault-tolerant connected

set cover problem’,”Theoretical Computer Science (to appear), February 2011. [Online]. Available:

http://arxiv.org/abs/1104.0733

[18] P. N. Klein and R. Ravi, “A nearly best-possible approximation algorithm for node-weighted steiner trees,”

Journal of Algorithms, vol. 19, no. 1, pp. 104–115, July 1995.

[19] S. Guha and S. Khuller, “Improved methods for approximating node weighted steiner trees and connected

dominating sets,”Information and Computation, vol. 150, no. 1, pp. 57–74, April 1999.

[20] ——, “Approximation algorithms for connected dominating sets,”Algorithmica, vol. 20, no. 4, pp. 374–387,

April 1998.

[21] W. F. Liang, “Approximate minimum-energy multicasting in wireless ad hoc networks,”IEEE Transactions

on Mobile Computing, vol. 5, no. 4, pp. 377–387, April 2006.
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v0v0

v1v1 v2v2

(a) Graph (b) Simplicial Complex

Fig. 1. Graph and simplicial complex:V = {v0, v1, v2}, S(a) = {(v0, v1), (v0, v2), (v1, v2)}, S(b) =

{(v0, v1, v2), (v0, v1), (v0, v2), (v1, v2), (v0), (v1), (v2)}.

{f1, f2}

{f1, f3} {f1, f4, f5} {f5, f6}

{f4, f6}

{f2, f7}

{f3, f8}

Fig. 2. An illustration of an MR-MC network and the constructed simplicial complex. The parameters within the braces are the

channels which each node can access. In the communication graph derived from the network, a link exists between two nodes

if and only if two nodes are within each other’s transmission range and they share at least one common channel. Notice that a

clique in the communication graph may not be a clique in the MR-MC network (correspondingly, a simplex in the simplicial

complex), e.g., the three nodes of the right empty triangle (they do not share a common channel).
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v0

v1 v2

v3 v4

v5
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Fig. 3. A simplicial complex whose MCSSub is the three filled triangles, and is not a “tree” (the integers are the weights of

the simplices).

v0

v1

v2
v3 v4

v5

Fig. 4. A simplicial complex∆ with 6 vertices (0-dimensional simplices:{v0},{v1},{v2},{v3},{v4},{v5}), 5 edges (1-

dimensional simplices:{v1, v2},{v2, v3},{v3, v4},{v3, v5},{v4, v5}), and 1 filled triangle (2-dimensional simplex:{v3, v4, v5}).
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S1

{

v1, ..., vn
2

}

S2

{

v1, ..., vn
4
, v(n

2
+2)

}

S3

{

v(n
4
+1), ..., v(n

2
+1)

}

S4

{

vn
2
, ..., vn

}

S5

{

v(n
2
+1), ..., vn

}

Fig. 5. The subgraph ofG∆ induced by the five facesS1, S2, S3, S4, andS5 with finite weights.

∆ H∆

Fig. 6. The derived graph of a2-simplex (squares inH∆ represent the faces that are not vertices of∆).
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Fig. 7. Average total energy vs. number of nodes. Parameters:Ptx=1, Prx = 0.01, L = 100, ri = i for 1 ≤ i ≤ 12.


